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\\\ ABSTRACT
\\ \.
\)A collocation method for evaluating integrals of rapidly oscillating

functions is analyzed. The method is based on the approximation of the

antiderivative of the integrand as the solution of an ordinary differential

equation via polynomial collocation. WNumerical examples are presented.
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SIGNIFICANCE AND EXPLANATION
Special integration methods have to be used for the integration of highly

oscillatory functions. 1In the present paper we describe such a method and

determine the order of convergence.
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ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS
D. levin®*, L. Reichel and C. Ringhofer

1. INTRODUCTION

In (3] a collocation method for computing integrals with rapidly oscillatory
integrands was presented, and numerical examples indicated fast convergence. In the
present paper, we analyze the method, show convergence rates, and discuss the choice of
collocation points.

We are to compute integrals at the form

b
(1.1) =] fxed®/fq,

a
where -» < a <b <=, i =7/-1, q(x) is a real-valued function, £(x) is a complex-
valued function and € 4is a constant 0 < € € b - a, We assume that f(x) and q(x)

vary moderately on [a,bl. Specifically, we assume there are conatants 51,6 such that

2
0 < 51 < l%& (x)] ¢ 62 and 61 > € holds. The integration method is based on the

observation that if a function p(x) satisfies

(1.2) g; (p(x)eiq(x)/s) - f(x)eiq(x)/c, a<x<b,
then the integral is given by
(1.3) 1 = p(helTPIE _ ayelala) /e |

From (1.2) it follows that p(x) is any solution of

(1.4) pt(x) + % q'(x)p(x) = £(x), a< x<b,

Bquation (1.4), we solve by approximating p(x) by piecewise polynomials, which we
determine by collocation. Details as well as convergence results are provided in Section

2. Section 3 contains numerical examples.
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2. CONVERGENCE PROPERTIPFS

Let a =z, < 25 < woe < Z 4™ b be a partition of (a,b], and for notational

convenience assume that all zy are equidistant with

(2.1) h = 22

- ’j+1 - zj, = 1(t)m .
and h61 > €. On each subinterval [zj+1,zj], we approximate p{x) by a k-th degree
polynomial, which we determine by collocation in k + 1 points. This gives us a

convergence order of 0(€2hk-1), and as example 2.1 below shows, this result is sharp.

From lemma 2.1 below it follows that |I| = 0(€e), why the relative accuracy of the method

is 0(€hk-1)- we next describe the collocation method. Choose k + 1 reference points

wye 0 =wy <wy < .ooo <wy =1, The collocation points w:

in [zj+1,zj], we obtain by
the linear map
(2.2) wl = zy + hwg, & = 0(Nk, 3= 1UDm.

Let !n (x) Dbe the lLagrange polynomials defined by wg, 8 = 0(1)k, {i.e.

3

k x - vj
]

2. 2 = I = 0(1)k .
(2.3) n'j(x) o wj - wj ' n (
n 8
stn

Determine the polynomial

X .
(2.4) py(x) = nzo 2,50y (%)
from
(2.5) pi(x) + % q'(x)pj(x) = f(x), x = v%,v{,...,wg .

The computed pj(x) approximates p(x) on [’j'zj+1]' Analogously to (1.3)

iglz, .  )/¢ iqlz )/
k - J+1 -
(2.6) Ij H pj(zj+1)e pj(zj)e
z
J+1
is an approximation of | f(x)eiq(x)/edx, and
*3
w1
(2.7 o= ) :‘;
i=1

approximates I.




Theorem 2.1
Let 1, 1%, h, Py etc. be defined by (1.1) and (2.1)=(2.7). Then
1 - 1] ¢ ce2n® T,
where c is a constant independent at € and h.
To proove theorem (2.1) we first need some additional lemmas: As we will see it is
essential for our method that there exists a sufficiently smooth solution of (2.5), i.e.
that there exists a solution which has sufficiently many derivatives bounded uniformly as

€ goes to zero. This is shown in

lemma 2.1

let f(x) e c2‘-1[zj,zj+1] and q(x) € Cz‘[zj,zj+1]. Then there is a solution wv(x)
(2.8) v (x) +%q'(x)v(x) -f), T $ xSz,
which satisfies
8
(2.9) |§;§ (x)| € ce on (24,2441, & = 0(1)
where ¢ is a constant independent of €.
Proof. Let
K
vK(x) 1= ) vs(x)es '
a=1
v! . (x)
- LX) R - M -
vix) s 19" (x)’ Vg (x) = 19 (%)’ 8 = 2(1)x .

Then v satisfies

vé(x) + % q'(x)vK(x) = f(x) + ekv;(x)
and
dva
NG (x) = 0(e), zj < x € zj+1, 8 = 0(1)x .
Now

iglz )/¢e

x
3 e-iq(x)/e e-iq(x)/c i Qlattl/e

v({x) := V‘(z le + £(t)at

3

i
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solves (2.8). Introduce e(x) := v(x) - v‘(x). Then

e'(x) + % q'(x)e(x) = vé(x)ck. e(z ) =0,

3

Then e(x) can be written as

-iq(x)/e Jx e:lq(t)/e
z

3

(2.10) elx) = e vi(tiat .

From
x
| e1q(t)/e
2z

3

vé(t)dt = 0(e), 'j < x < zj+1 N
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+
it follows that e(x) = o(e‘ 1) on [‘j'zj+1]' Repeated differentiation of (2.11) shows

1

K+ 1= -
8), s = 0(1)x. By construction V‘(x)e has X

A D8

]
that de (x) is at most O(e€

ax®
derivatives bounded independently of €. The lemma follows from v(x) = V;(x) + e(x).
Remark 2.1

The smoothness requirements on f(x) and g(x) are only sufficient. It is simple to

construct functions where v(x) has more continuous derivatives than f(x) and g(x).
See section 3.

k

Next we estimate the error in Ij (see (2.6)) on each subinterval [zj,zj§1]. let

v(x) solve (2.8). Then

1] 7 roet )/ Cax - 1§| -

/€ iq(z )/

i
Q(zj+1) 3 | <

(2.11) = |(v(z Ve - (v(zj) - pj(zj))e

ge1) T Pyl2y,,
< Iv(zj+1) - pj(zj+1)| + |v(zj) - pj(zj)| .

Hence, it suffices to bound v(x) - pj(x) of £y and Ti4qe

lesma 2,2

Let v(x) and pj(x) have the same meaning as in (2.11). At the collocation

points wl, & = 0(1)k, in [z5,24.4], (see (2.2))

-4-
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(2.12) |v(w3) - pj(vz)l <ec max Ir |,
0<ack
holds where c is a constant independent of ¢ and h, and the r, are defined as
follows: let pj(x) be the polynomial of degree < k satisfying pj(wi) = v(vz),
s = 0(1)k. We define r_ as the residuals

s
(2.13) r, 1= vty - pith), s = 0(1k .

Proof

With the representation (2.4) of pj(x), the collocation equations (2.5) become

(2.14) (L+ipa=g,

where

D : = aiag(iq' (w]),iq' (wl),...,ig" (wd))
1

[ ] 1 j
‘oj"’g' c e e 22wy

xj o

L 1= .
3 .|
laj(vk) TS lkj(wk)

- 3T
£ (t(vg),...,f(vk))
a = (.Dj"""kj)

Let v(x) be any solution of (2.8), and let v := (v(vg),...,v(wz))T. We write

pyordy + L atdip dy = tdy v, s e 0k, as

(2.15) (R+dnmy=g+r,

vhere r = (tO't1""'rx)T' Since the elements of L are 0(&), lq‘l > 61 and € € §,h

1
the matrix L + ry D 1ia invertible, and

-»
v~a=ceL +0) 'z =e0' ) (-0 e)"r .
a=0

This proves the lesma.

5
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The next lemma bounds r. The result is well-known and a simple proof by Rolle's

theorem is omitted.

Lemma 2.3

Let p(x) be the polynomial of degree € k that interpoiates g(x) € Ck+1[zj,zj+1)

at points wg,vz,...,wa. Then for any x € [zj,zj+1],

[p*(x) - g*(x)] < ch® max 32———f§§ll ,
z . Sx<z dx

3j j+1

where ¢ 1is a constant independent of h.

We are now in a position to give an estimate for the integration error for one

subinterval.

Theorem 2.2

Let I; be defined by (2.6), and assume that f(x) and g{(x) satisfy the smoothness

requirements of lemma 2.1. Then

2k

1a(x)/€ g0 | ¢ cen® ,

1
f(x)e

z
i+
(2.16) ng -

where ¢ 1is a constant independent of € and h.
Proof. Taking the smooth solution of lemma 2.1 with x =k + 1, its k + 1st derivative
in continuous and 0(€). By lemma 2.3, r introduced in lemma 2.2 satisfies

max |r | < cehk for some constant ¢ independent of € and h. Therefore the theorem
0€<s<k
follows by (2.11) and (2.12).

The proof of theorem 2.1 is now trivial. It follows from theorem 2.2 and summation

over all m = (b - a)/h subintervals. The following example shows that the error estimate
of theorem 2.1 is sharp if € < h61.

Bx. 2.1 Consider the integral

1
1= exeix/tdx .

0

pivide [0,1) into m subintervals [zj,zj+,] of length h := i/m, i.e. £y = hj,

6=




j = 0(1)m. Por future reference, we write I as

. m=1 %341 m-1 z, iz /€
(2.17) 1= ) | efel®Cay = T%'E (eE -1y ) ede I,
=0 zj j=0

We apply our integration method with k = 1 on each subinterval [zj”j+1]‘ We determine
a linear function

- 3+1
Pyix) = a,, =% i3 Th

R

which satisfies

N
%
»®
]
N
T W TR A T 200 ety GPRIHY R Tt

Py(zg) =T Bylr) = e a3 w1,

;.
. This determines '3
-1 iz, ,/€ iz /€ ‘
1 " J+1 3 14
I = ) (e d, -e a..) !
520 13 03 ?
which after some simplification can be written as g
h m-1 z, iz /e F
(2.18) ' = [E(eheE oy s 2 (L] ) el T 4
i h
=0 3
with (2.17) this gives 3
| - h _ m-1 z iz /€ '
- (219) 1" -1 = [t (MelME oy + 21 (ML) ) ede T
1= ie h
‘ =0
m-1 2z, igz_ /¢
¥ = (0e?) + 2on)] ) ede ¥ .
¥ 3=0 4
i |
‘i The sum in (2.19) is bounded by 0(1/h), and therefore ?
- £
£
[1’ - 1] <ofe? + oce/m) . §
From (2.19) it is obvious that theorem 2.1 gives a bound for the decay of the error, while g
;
. the error itself might not tend to zero smoothly as h + 0 or € + 0. This is also H
E:
b

illustrated by the numerical examples of section 3.

*
-7-
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We conclude this section with a suggestion for collocation points. In the proofs we
have only required that the collocation points are distinct on each subinterval
[zj,zj*1] and that the end points of each subinterval are collocation points. While the
allocation of collocation points does not affect the rate of convergence Ik + I as
h+0 oras € + 0, the allocation does affect the constant ¢ 1in (2.16) and in theorem
2.1. Let D denote the differentiation operator, and write (2.8) symbolically as

(1 +1£,—D)v-1%f

or equivalently, if € is sufficiently small and f is sufficiently smooth,

3 3
(2.20) v-(:+;~‘-.-n)"f—,f--i°—,f+ =+ — SE

This shows that the polynomial pj(x) we determine by (2.5) is close to the kth degree

polynomial p;(x) which interpolates Iﬁr f at wg, s = 0(1)k, and it suggests the us
of collocation points vg, which are good for the interpolation problem

p;(wz) - % t(vg)(q'(wz))_1, B8 = 0(1)k. If we select the wg as the extended Chebyshev

points

cos( (2% + 1)%/(2k + 2)))
3 441 3 3+1 cos(®/(2k + 2)) !

Lt =0(1)k ,

I -
then pj(x) will be close to the best polynomial approximant to % £(x)(g'(x)) ', see
de Boor [1], ch. 2 or Brutman [2]. The examples of section 3 confirm that the extended

Chebyshev points also are gqood for solving the collocation problem (2.5).




3. NUMERICAL EXAMPLES
In all examples the interval is (0,!']. The m subintervals [zj,zj+1J are defined

by zy - hj, h= iv j = 0(1)m. k denotes the degree of the polynomial pj(x). It

nothing else stated, the collocation points {'1)2-0 are the extended Chebyshev points

(2.21). All computations were done on a VAX 11/260 in double precision arithmetic, i.e.

with 12 significant digits.

2

Ex. 3.1 Let qix) = x + x and

£Hx) 1 = 4 1+';‘x - ﬁ(-21 2':-
(x - 0,5)" + 0.1 ((x = 0,5)° + 0.1)

Then (1.4) is solved by pix) = e((x = 0.5)2 + 0.1)-1. The table shows the dependence of

]t -=1%] on h and on €.

-9-
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1/2
1/4
1/8

1/16

1/2
1/4
t/8

1/16

172

1/2

172

20

20

20¢

1073

1073
1073
1072

1073

1076
1076
1076
1076

106

1073

10~3

1073

*equidistant collocation point

¥ (rounded) 1 - 1¥|
-3.9093 + 10”3 + 2.6642 + 1073} 7.3+ 1078
-3.9070 » 1073 + 2.6573 « 10734 1.4 » 1078
. 5.0 » 1078
. 4.7 » 1072
. 1.7 « 10”10
-6.9997 + 10”7 - 1.8735 « 10764 1.0 « 10~
) 1.5 « 10-12
- 8.8 » 10~
. 3.7 + 10715
" 2.3« 10-16
-3.9070 « 10°3 + 1.6573 + 10734 2.9 « 10-14
-6.9997 + 10”7 - 1.8735 + 10”63 1.4 » 1071°
-3.9070 » 10°3 + 2.6573 » 10734 1.3« 107"

We note that high accuracy can be obtained not only by decreasing h, but also by

increasing k.

The latter strategy can be competitive since the strong diagonal dominance

of system (2.14) allows iterative solution in o(kz) operations.

Ex. 3.2 Let g{x) := x + x2 and f(x) 1= (1+2x)(x - f}]zlign(x - —%)1 - Z(x - -gﬂe.
/2 /2 /2

Then p(x) := (x - —%)zsign(x - —é) solves (1.4).
v v

10
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i
h X € 1¥ (roundea) 1 - 1¥| r
: 1/8 2 1073 4.6847 » 1074 + 7.9750 + 10754 3.63 + 1078
116 2 1073 4.6849 § 1074 + 7.9770 + 10751 1.85 « 107%
i
. 4
174 8 1073 4.6848 + 1073 . ,.9788 + 10751 4.47 + 1072
178 8 10”3 4.6848 » 109 + 7.9783 « 10751 2.74 « 1072 j
1/4 a* 1073 4.6849 ¢+ 1074 + 7.9809 + 10751 2.9 + 1078 i
15
tequidistant collocation points. i
4
The example shows the robustness of the method. H
The last example ghows that the conditions of lemma 2.1 are not necessary. !J
1 [
Ex. 3.3 Let 4q(x) := |x - —| and define q'(—) = 0. Let 4
V2 2
] -
P 7 S T B 1
(x - 0.5)" + 0.1 ((x - 0.5)° + 0.1) :
Then p(x) is the same as in Example 3.1. ;
t
h k € 1¥ (rounded) 1 - 1¥|
¥
1/8 5 1073 6.3105 » 1074 - 1.1924 + 10734 6.0 « 10~°
5 1073 " 9.3« 10~ M
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